skip to main content


Search for: All records

Creators/Authors contains: "Kaczorowski, Dariusz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Charge density wave (CDW) ordering has been an important topic of study for a long time owing to its connection with other exotic phases such as superconductivity and magnetism. The$$R{\textrm{Te}}_{3}$$RTe3(R= rare-earth elements) family of materials provides a fertile ground to study the dynamics of CDW in van der Waals layered materials, and the presence of magnetism in these materials allows to explore the interplay among CDW and long range magnetic ordering. Here, we have carried out a high-resolution angle-resolved photoemission spectroscopy (ARPES) study of a CDW material$${\textrm{Gd}}{\textrm{Te}}_{3}$$GdTe3, which is antiferromagnetic below$$\sim \mathrm {12~K}$$12K, along with thermodynamic, electrical transport, magnetic, and Raman measurements. Our ARPES data show a two-fold symmetric Fermi surface with both gapped and ungapped regions indicative of the partial nesting. The gap is momentum dependent, maximum along$${\overline{\Gamma }}-\mathrm{\overline{Z}}$$Γ¯-Z¯and gradually decreases going towards$${\overline{\Gamma }}-\mathrm{\overline{X}}$$Γ¯-X¯. Our study provides a platform to study the dynamics of CDW and its interaction with other physical orders in two- and three-dimensions.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    The family of transition-metal dipnictides has been of theoretical and experimental interest because this family hosts topological states and extremely large magnetoresistance (MR). Recently,TaAs2, a member of this family, has been predicted to support a topological crystalline insulating state. Here, by using high-resolution angle-resolved photoemission spectroscopy (ARPES), we reveal both closed and open pockets in the metallic Fermi surface (FS) and linearly dispersive bands on the (201) surface, along with the presence of extreme MR observed from magneto-transport measurements. A comparison of the ARPES results with first-principles computations shows that the linearly dispersive bands on the measured surface ofTaAs2are trivial bulk bands. The absence of symmetry-protected surface state on the (201) surface indicates its topologically dark nature. The presence of open FS features suggests that the open-orbit fermiology could contribute to the extremely large MR ofTaAs2.

     
    more » « less
  3. Abstract Recently, nodal line semimetals based on ZrSiS-family have garnered massive research interests contributing numerous experimental and theoretical works. Despite being the most studied nodal-line semimetal, a clear understanding of the transient state relaxation dynamics and the underlying mechanism in ZrSiS is lacking. Using time- and angle-resolved photoemission spectroscopy, we study the ultrafast relaxation dynamics in ZrSiS and reveal a unique relaxation in the bulk nodal-line state which is well-captured by a simple model based on optical and acoustic phonon cooling. Our model predicts linear decay processes for both optical and acoustic phonon relaxations with optical cooling dominant at higher temperatures. Our results reveal different decay mechanisms for the bulk and surface states and pave a way to understand the mechanism of conduction in this material. 
    more » « less
  4. null (Ed.)